CT Imaging

We were the first to use CT imaging for the study of the comparative morphology of the swim bladder and ear in live, anesthetized fishes (Webb et al., 2006; 2010). We have used µCT to visualize the morphology of the cranial lateral line canals in cichlid fishes and other species with interesting lateral line canal phenotypes (Webb, et al., 2014; Webb, 2014).  Ongoing projects involve the quantification of µCT data that will be used for modeling lateral line canal function and the design of artificial lateral line sensors and tools.

Figure3_CT_NEW

An example of µCT imaging of the skull, including the lateral line canals, in cichlid fishes (top: Labeotropheus fuelleborni and Metriaclima zebra, bottom: Aulonocara baenschi). (in Webb et al. 2014, Journal of Morphology).

Figure4FINALSmall

CT Imaging of the volume of air within swim bladders (low density, white) and otoliths (high density, red) in squirrelfishes (A, B) and butterflyfishes (C, D, E) (From Webb et al., 2010, J. Fish Biology)

We have CT or µCT data for:

  • Chaetodon (several spp. of butterflyfishes) – caudal half of skull, swim bladder, vertebral column (CT)
  • Forcipiger flavissimus (long nose butterflyfish) – caudal half of skull and swim bladder, vertebral column (CT)
  • Sargocentron punctatissimum (soldier fish)- caudal half of skull and swim bladder, vertebral column (CT)
  • Myripristis kuntee (squirrelfish) – caudal half of skull and swim bladder, vertebral column (CT)
  • Notropis buccatus (silver jaw minnow) – whole head, anterior vertebral column (µCT)
  • Apollonia melanostomus (round goby) – whole head, anterior vertebral column (µCT)
  • Gymnocephalus cernuus (Eurasian Ruffe) – whole head, anterior vertebral column (µCT)
  • Several Lake Malawi cichlids:
    • Labeotropheus fuelleborni – whole head, anterior vertebral column (µCT)
    • Metriaclima zebra – whole head, anterior vertebral column (µCT)
    • Tramitichromis sp. – whole head, anterior vertebral column (µCT)
    • Aulonocara baenschi  – whole head, anterior vertebral column (µCT)
    • Aulonocara stuartgranti – whole head, anterior vertebral column (µCT)

CT imaging and post-processing was carried out at the Woods Hole Oceanographic Institution (with Dr. Darlene Ketten; http://csi.whoi.edu; See JPG’s at: http://csi.whoi.edu/fish-gallery). µCT imaging was carried out either at the Orthopedics Research Lab (Rhode Island Hospital) or at the Museum of Comparative Zoology (Harvard University). All data was post-processed, and 2-D and 3-D images and videos were generated using OsiriX (64-bit; http://www.osirix-viewer.com).

A Guide_to_OsiriX (2010) was written by undergraduate Timothy Alberg and is available for download.

Public Access:  Digital data (DICOM) and new/original 2-D or 3-D images derived from digital data (processed in OsiriX) are available to other researchers (upon request, via email) for use in grant proposals and in publications, with the expectation of appropriate acknowledgment.

Publications With CT and µCT Imaging:

  1. Webb, JF, Smith, W.L., Ketten, D.R. 2006. The laterophysic connection and swim bladder in butterflyfishes in the genus Chaetodon (Perciformes: Chaetodontidae). J. Morphology. 267:1338–1355.
  2. Webb JF, Montgomery JC, Mogdans J. 2008. Bioacoustics and the lateral line system of fishes. pp. 145-182. In: Fish Bioacoustics (eds. Webb JF, Fay RR, Popper AN) Springer-Verlag, NY.
  3. Alberg, T, Moore, DC, Webb, JF. 2010. µCT Imaging of the Cranial Lateral Line Canal System of Teleost Fishes. ASIH Providence, RI, July 2010. View Poster HERE..
  4. Webb, JF, Herman, JL, Woods, CF, Ketten, DR.  2010. The ears of butterflyfishes: “Hearing generalists” on noisy coral reefs?  J. Fish Biol. 77: 1434-1451.
  5. Webb, JF. 2014. Morphological diversity, evolution and development of the mechanosensory lateral line system.  In: (Coombs S, and Bleckmann, H. eds) The Lateral Ljmor20285ine System. [Springer Handbook of Auditory Research] NY: Springer-Verlag. pp. 17-72.
  6. Webb, JF. 2014. Lateral line morphology and development and implications for the functional ontogeny of flow sensing of fishes. In: Bleckmann H, Mogdans J, Coombs, S. (eds.). Flow Sensing in Air and Water – Behavioural, Neural and Engineering Principles of Operation. pp. 247-270.
  7. Webb, JF, Bird, NC, Carter, L, Dickson, J. 2014. Comparative development and evolution of two lateral line phenotypes in Lake Malawi cichlids.  Journal of Morphology. 275: 678-692.   DOI: 10.1002/jmor.20247.
  8. Bird, NC and Webb, JF. 2014. Heterochrony, modularity, and the functional evolution of the lateral line system. EvoDevo2014, 5:21. DOI: 10.1186/2041-9139-5-21. Full text.
  9. Schwalbe, MAB and Webb, JF. 2015. Effect of light intensity on prey detection behavior in two Lake Malawi cichlids, Aulonocara stuartgranti and TramitichromisJournal of Comparative Physiology A.  201: 341-356. DOI 10.1007/s00359-015-0982-y
  10. Tricas, TC and Webb, JF. 2016. Acoustic communication in butterflyfishes: Anatomical novelties, physiology, and behavior, pp. 57-92. In: Sisneros, J. (ed.). Fish Hearing and Bioacoustics: An anthology in honor of Arthur N. Popper and Richard R. Fay. Advances in Experimental Medicine and Biology, Vol. 877. NY: Springer Verlag. 
  11. Becker, EA, Bird, NC, and Webb, JF. 2016 Post-embryonic development of canal and superficial neuromasts and the generation of two cranial lateral line phenotypes. J. Morphol. 277:1273-1291.
  12. Marranzino, AN and Webb, JF. 2018. Flow sensing in the deep sea: The mechanosensory lateral line system of stomiiform fishes. In Press, Zoological Journal of the Linnean Society.  https://doi.org/10.1093/zoolinnean/zlx090

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s